The CrispR revolution
Emmanuelle Charpentier and Jennifer Doudna have just won the Nobel Prize for Chemistry. They have been my picks for the prize for years now. Nobel Prizes are often awarded decades after the fact, but CrispR has been such an obvious winner that it is a surprise it took until 2020 to be awarded. (Largely, I guess, due to the politics of several competing claims and patents, that have been going through the courts).
This Noble is a well-deserved recognition of one of the seminal breakthroughs in biology of the last several decades. The award recognises elegant basic biological experiments that identified a novel immune mechanism that bacteria use to fight off viruses. The key insight is that the chemistry of this system allowed simple modifications to rewire this bacterial system into a tool to edit the genome of essentially any living being. A striking example of blue-skies research on basic science having an incredible translational effect. The CrispR system ranks up there with identifying the structure of DNA or the sequencing of the human genome - indeed, for the first time it allows us to really use the information gained by these earlier revolutions. CrispR tools are used daily across the globe to create new vaccines, generate gene therapy, design bacteria to help industrial processes. Essentially, the discovery of CrispR as a genome-modification tool has put biology on steroids - dramatically accelerating the pace of both basic research and translational applications
Reader Comments