Navigation
Public engagement

Becoming a Scientist

Read online for free

Print your own copy

Virus Fighter

Build a virus or fight a pandemic!

Play online

Maya's Marvellous Medicine

Read online for free

Print your own copy

Battle Robots of the Blood

Read online for free

Print your own copy

Just for Kids! All about Coronavirus

Read online for free

Print your own copy

Archive
LabListon on Twitter

Entries in genetics (27)

Sunday
Nov252012

Planning the paediatrics genetics screen

Only fair to have an age-appropriate represenative at the meeting...

Wednesday
Jun272012

If birds are baby dinosaurs and humans are baby apes...

A recent publication in Nature suggests that in many ways, birds are baby dinosaurs. The finding is less unusual than it might seem, afterall it is well established that humans have many traits of baby apes and dogs are in some ways baby wolves. The process is known as paedomorphosis or neoteny - the retention of juvenile traits in the adult form. This can take the form of enlarged eyes (birds), larger brains (humans) or retention of juvenile behaviour (dogs).

The reason why paedomorphosis works is that the basic body plan has much deeper evolutionary roots than the species-specific add-ons. Think of it this way, all mammals pretty much have the genetic program to make a nose, but only the elephant has evolved an additional genetic plan to turn that nose into a trunk. Deep in the genetic code of the elephant there is still the "standard nose" code (and indeed, the foetus has a relatively normal nose), it just has added lines of code that upgrade the standard nose into a trunk. This means that in theory, the elephant could evolve away from the trunk by just ditching the upgrade code, letting it default into the standard nose code. This is true for most of development - new code is never optimally created for the organ, rather it is always adding a bit of extra code to change the outcome. For a software engineer it would be the hight of laziness, creating bloated useless code, with every problem solved by kludge

Despite being inefficient and inelegant, the system of "generic code" plus "species specific" is very useful for evolution. This is because species evolve to be adapted to a specific environment. The flamingo beak is fantastic for a filter-feeder, but it has lost the generic functions that a sparrow could use its beak for.

Imagine an island with brine lakes that is populated only by flamingoes. If those brine lakes dried up, the flamingoes would go extinct. But what if new niches opened up? The ordinary "forward" process of evolving a generalist beak is quite slow, because you need to generate new code, but the "backwards" process of paedomorphosis could be quite fast, because it is just the process of deleting the species-specific code, defaulting back to the generic beak (as in anything else, destruction is faster and easier than generation). It is not difficult to imagine a relatively small set of genetic deletions that would mean the adult flamingo retained the juvenile generic beak, and then these "de-evolved" generalist birds could take advantage of the new habitat, and indeed start to evolve specific changes to specialise towards that new habitat.

As a general rule, following a large change in the environment, the generalised (juvenile) body plan is probably going to be more successful than the specialised (adult) body plan. Paedomorphosis in effect provides a default option to revert to in case of catastrophic change, allowing a species to shed its specialised features and start again. One possibility that interests me is that an open niche may drive paedomorphosis by selecting for rapid population growth. Consider the drying up of Africa that occured 5 million years ago. All of the apes that were specialised to live in rainforest would have seen dramatic contraction of their habitat, leaving just a few thousand gorillas left today. But the drying also created a new niche, the savanna, which could be exploited by any ape that was able to adapt. Paedomorphosis probably played a role in human evolution, by shedding the arboreal features required to swing in trees, allowing the pre-humans to venture onto the savana. Now consider the first pre-humans that were suitable for the savana - they has a continent to spread across, with the only limitation being the reproduction rate. We already know that a truly open niche creates an evolutionary pressure to fill it - such as the natural selection of cane toads in Australia with longer legs simply because they can move faster into virgin territory. What if this put selection on humans to reproduce at a younger age? Any variants that became fertile younger (and thus, while still carrying juvenile features) would outcompete the others, creating a population shift. In effect, there would be selection for paedomorphosis simply to increase the reproduction rate, with the retention of other juvenile traits (such as a larger brain) being a side-effect. 

If this model it correct, it would mean that open niches would drive paedomorphosis via two mechanisms - by selecting for the retention of juvenile traits to give a more generalist body plan, and by selecting for sexual maturity at a younger age to give more rapid reproduction. This dual selection force would drive much more rapid evolution, and may be responsible for some of the most remarkable evolutionary shifts, including the evolution of humans. 

Friday
Jan202012

Generation of a family-specific virus through repeated human passage

Generation of a family-specific virus through repeated human passage

Hayden A M Liston1, Lydia E Makaroff1 and Adrian Liston 1,2*
1 Sleepytown University, Brussels 1060, Belgium
2 VIB, Leuven 3000, Belgium
*send correspondance to adrian.liston@gmail.com

Nature Junior 8(2) 103-7 

Background. Effective control over viral infection relies on the host carrying appropriate HLA alleles for viral antigen presentation. The explosive expansion of viruses like small-pox into previously isolated human populations demonstrates the potential for certain viral strains to have a disproportionate effect on particular racial groups. As yet, however, a virus with pathogenic potential restricted to the family level has not been identified. Objective. To generate a family-specific virus in an experimental setting, in order to test the feasibility of this occurrence in nature. Methods. A common cold virus was repeatedly passaged between two related individuals for six months. Mechanisms of transmission included frequent kisses, the placement of hands and feet into the mouth and in one instance direct vomiting into the mouth. Results. A single viral strain was propagated with the capacity to chronically infect both members of this family, while having seemingly non-pathological consequences upon exposure to unrelated individuals. The pathogenic loci are predicted to be a dominant HLA carried by both family members, as the experimental inoculation of a third individual, related to one family member but not the other, did not result in pathology. Conclusions. Generation of a family-specific virus is feasible through repeated experimental transfer between family members. A natural situation analogous to the experimental set-up used here would be the transmission that can occur between parents and young children with low levels of personal hygiene. The dominant activity of the HLA cluster in this infection suggests the generation of a regulatory T cell population which inhibits effective immunity against the family-specific virus.

Key Words: virus, horizontal transfer, HLA, human genetics, regulatory T cell.

Tuesday
Jul272010

Juvenile Diabetes Research Foundation

Good news in funding appears to come in pairs. The Juvenile Diabetes Research Foundation is supporting the Autoimmune Genetics Laboratory through a Career Development Award. This is a grant that I am particularly happy to receive, not just for the science that will come out of it, but because I have been a long-time admirer of the JDRF, who tirelessly raise money for research on type 1 diabetes. They are not only the leading sponsor of type 1 diabetes research (spending over $1.4 billion on research since 1970), but also take an active role in coordinating researchers and integrating patient into trials to ensure that the best results come from the money spent. As a PhD student with Chris Goodnow, I always joined in the Walk for the Cure fundraiser, and JDRF sponsored my conference travel to the International Immunology Congress in 2004.

Now the JDRF is supporting our research project on the contribution of non-hematopoietic defects to autoimmune diabetes:

The Non-obese diabetic (NOD) mouse is one of the best studied models of common autoimmune disease in humans, with the spontaneous development of autoimmune diabetes. Similar to the way multiple autoimmune diseases run in families of diabetic patients, the NOD mouse strain is also susceptible to multiple autoimmune diseases, with specific disease development depending on slight alterations in the environment and genetics. These results demonstrate the complexity of autoimmune genetics – in both human families and inbred mouse strains there appear to be a subset of genetic loci that skew the immune system towards dysfunction and an additional subset of genetic loci that result in this immune damage affecting a particular target organ. In the case of NOD mice and type 1 diabetic patients these additional genetic factors result in damage to the beta islets of the pancreas. While the previous emphasis on type 1 diabetes was strictly on the immune system, this model suggests the important role the pancreas may play in the disease process. If certain individuals harbour genetic loci that increase the vulnerability of pancreatic islets to immune-mediated damage, the combination of immune and pancreatic loci could provoke a pathology not caused by either set of genes alone.

Current approaches to genetic mapping in both mice and humans are confounded by the large number of small gene associations and are not able to discriminate between these functional subsets of genetic loci. However, we have developed an alternative strategy for functional genetic mapping. Instead of mapping diabetes as the sole end-point, with small genetic contributions by multiple genes, we map discrete functional processes of diabetes development. This has three key advantages. Firstly, as simpler sub-traits there are fewer genes contributing, each with larger effects, making mapping to particular genes more feasible. Secondly, by mapping a functional process within diabetes we start out with functional information for every gene association we find. Thirdly, by mapping a series of functional processes and then building up this genetic information into diabetes as an overall result we gain a more comprehensive view of diabetes, as a network of genetic and environmental influences that cause disease by influencing multiple systems and processes.

In this project we propose to use the functional genetic mapping approach to probe the role of the pancreatic beta islets in the development of diabetes in the NOD mice. We have developed a transgenic model of islet-specific cellular stress which demonstrates that NOD mice have a genetic predisposition of increased vulnerability of the pancreatic islets to dying and hence the development of diabetes. This is a unique model to analyse the genetic, cellular and biochemical pathways that can be altered in the pancreas of diabetes-susceptible individuals, shedding light on the role the beta islets play in the development of disease.

Tuesday
Jan122010

The role of sex in evolution

Sex is a powerful force for evolution. On the face of it, sex seems like an absurdly complicated way to reproduce. Prokaryotic organisms, bacteria and archea, have a much faster a simpler system, where the cell simply duplicates its DNA and splits in half into two identical daughter cells. The entire process, called mitosis, only takes 20 minutes. This means that under ideal circumstances a single bacterium can divide to produce 8 offspring in the first hour. In the second hour that single precursor cell could form 64 offspring, after 6 hours a single cell could form over 200,000 daughter cells. This asexual reproduction is so efficient that it only operates at capacity for very short durations, as exponential growth of a single cell could use up the resources of an entire planet within days. Typically a bacterium ticks over slowly by scavenging what resources are available, only to explode into exponential asexual growth when new resources become available and a race to exploit them occurs.

Compare this to the elaborate, time-consuming and often bizarre process of eukaryotic sex, which multicellular organisms from plants to fungi to animals use to reproduce. Sex (and the accompanying mate selection) is one of the most difficult and dangerous parts of an individual’s life, and even passionate advocates of the activity find it difficult to explain. Yet through an evolutionary lens, sex provides very concrete advantages. The best illustration of the advantages of sex come from yeast mating, as these simple organisms are capable of both asexual and sexual reproduction.

Simple sex

Yeast can be thought of as being halfway between simple bacteria and complex multicellular organisms like humans. In terms of lifestyle and behaviour, yeast operate like bacteria – single celled organisms capable of an independent existence through the use of resources in their direct environment. Inside the cell, however, yeast are clearly eukaryotic organisms, with the same basic machinery for cell division, metabolism and survival as plants and animals. It is therefore convenient to think of yeast as essentially human-like cells, trapped in an early bacterial-like lifestyle. This is an oversimplification of course: bacteria, yeast and humans are all highly evolved organisms and none have remained static in evolutionary time, but it is a useful oversimplification.

So how do yeast reproduce? Asexually, like the bacteria they share a lifestyle with? Or sexually, like the multicellular organisms they are genetically closest to? The answer is both. When yeast are in a rich nutrient environment they reproduce asexually like bacteria. A single cell undergoes mitosis, duplicating its DNA and then splitting into two daughter cells, each identical to the parental cell. This gives the yeast all the advantages of bacterial reproduction – very simple rapid reproduction to win the race for abundant resources. The parental cell was successful in the environment, so the identical daughter cells should be equally successful and proliferate likewise.

However as noted above, exponential growth can never continue unabated, sooner rather than later resources become limiting or some other factor stresses the survival of the yeast. At this point yeast have a trick available that bacteria do not – sex. Instead of undergoing dormancy, the yeast mate.

In the best understood system, that of Saccharomyces cerevisiae, there are two sexes of yeast, a and a, controlled by a single gene. Mating is very simple, the a cells release a chemical called ‘a factor’ and produce a receptor that causes them to migrate towards the chemical ‘a factor’. By contrast, the a cells release a chemical called ‘a factor’ and produce a receptor that causes them to migrate towards the chemical ‘a factor’. The two yeast cells, one a and one a, attract each other and fuse into a single cell. This cell now has two different copies of the yeast genome, one from each parent.

The a-a fused yeast cell can now undergo a complicated cellular division process called meiosis. Unlike mitosis, where the cell duplicates its genome and divides in two, meiosis involves duplicating the genome and dividing in four. This is possible because the a-a fused yeast cell has two copies of the genome to start with, so duplication gives four copies, one for each of the four daughter cells that result.

The important difference between mitosis and meiosis is the splicing of two different genomes to form unique combinations. Mitosis just duplicates the existing genome. Meiosis starts with two different genomes, and during the duplication processes these genomes are jumbled up together, creating new combinations of old characteristics. This means that all four daughter cells at the end are unique and different from the original parental cells.

The advantage conferred by sex is very straight forward – the parental cells were not dealing well with the environment they were in, since yeast mating occurs only under stress. Therefore why reproduce more cells that cannot cope with the environment? Instead the yeast takes a life-or-death gamble that a combination of genetic information from another cell will produce offspring better able to deal with the environment. In a simple scenario there would be two yeast strains, one able to deal with acidity and one able to digest complex carbohydrates. A change in environment to a high acidity environment where the only resources available are complex carbohydrates will stress both parental strains. However, by sex there is a chance that one of the daughter cells will inherit the acid resistance of one parent and the ability to digest complex carbohydrates from the other parent. Other daughter cells will not be so lucky and will die, but that one daughter cell with the chance combination of two necessary characteristics will be able to divide asexually and rapidly reap the rewards of a new resource.

In one final complication, yeast can change sex. A single gene makes yeast either a or a, so after mating and meiosis the four daughter cells include two a cells and two a cells. If a single a cell is successful in the new environment, asexual reproduction creates exact copies, so all progeny will be a cells. This would create an obvious problem if a new environmental stress requires another round of mating, so yeast carry spare “silent” copies of a and a genes and use these backup copies to flip from one sex to another, to make sure a population is always a mixture of a and a yeast.

Monday
Oct192009

Infectious cancer

It has long been known that the several causes of cancer are infectious. Typically a virus contains a number of oncogenes to enhance its own proliferation, and in an infection gone wrong (for both virus and host) a viral oncogene is incorporated into the host DNA, creating an uncontrollable tumour cell. One of the best examples of this is human papillomavirus (HPV), a virus which infects most sexually active adults and is responsible for nearly every case of cervical cancer worldwide (which is why all girls should be vaccinated before they become sexually active).

However these cases are not "infectious cancers", they are infectious diseases which are capable of causing cancer. True infectious cancers, where a cancer cell from one individual takes up residency in a second individual and grows into a new cancer, were unknown until recently. With the publication of a new study in PNAS we now have three examples of truly infectious cancers.

1. In the most recent study, researchers in Japan documented the tragic case of a 28 year old Japanese woman who gave birth to a healthy baby but within two months had been diagnosed with acute lymphoblastic leukemia and died. At 11 months of age the child also become ill and was diagnosed with acute lymphoblastic leukemia. Genetic analysis of the tumour cells in the baby demonstrated that the tumour cells were not from the child herself, but rather maternal leukemia cells that had crossed the placenta during pregnancy or childbirth and had taken up residency in their new host. With this information, retrospective analysis indicates that this is probably not a one-off event, and at least 17 other cases of mother-to-child transmission of cancer have probably occurred.

2. In addition to mother-to-child transmission of cancer, cancer can spread from one identical twin to another. Identical (mono-zygotic) twins have identical immune systems, preventing rejection of "transplanted" cells, unlike non-identical (di-zygotic) twins. Thus a tumour which develops before birth in one identical twin can be transferred in utero to the other identical twin, where it can grow without being rejected. In one improbable but highly informative case, a set of triplets were born where two babies were identical and the third was non-identical. A tumour had arisen in one of the identical twins in utero and had passed to both other foetuses, but had been rejected by the non-identical foetus and accepted by the identical foetus. Of course, with the advent of medical transplantation, transmission of infectious cancers is now no longer limited to the uterus. Transplantation of an organ containing a cancer into a new host can allow the original cancer to grow and spread, as transplantation patients are immunosuppressed to prevent rejection. There is also a single case of a cancer being transmitted from a surgeon who cut his hand during surgery to a patient who was not immunosuppressed.

3. In a medical mystery well known to Australians, the population of Tasmanian Devils has been crashing as a fatal facial tumour has been spreading across the population. The way the fatal tumours have spread steadily across Tasmania and sparing Devils on smaller islands first suggested a new infectious disease that causes cancer, similar to HPV in humans. However a suprising study demonstrated that the cancer was directly spreading from one Devil to the next after having spontaneously developed in a single individual. These scrappy little monsters attack each other on first sight, biting each other's faces. The cancer resides in the salivary glands and gets transmitted by facial bites to the new Devil. Unfortunately for Tasmanian Devils, a genetic bottleneck left all Devils so genetically similar that they are, for immunological purposes, all identical twins. This means that the cancer cells transmitted from one Devil to another through biting are able to grow and kill Devil after Devil. The cancer from a single individual has already killed 50% of all Devils, and it is possible that we will have to wait until the cancer burns out by killing all potential hosts before reintroducing the Devil from the protected island populations. As unlikely as this seems, another similar spread occurs in dogs, where a cancer that arose in a single individual wolf is being spread through sexual transmission from dog to dog around the world. This example also illustrates the point made about cancers being "immortal" - the original cancer event may have occured up to 2500 years ago, with the tumour moving from host to host for thousands of years without dying out.

Tuesday
Sep152009

Recreating the thymus

I am writing today from the European Congress for Immunology in Berlin. A talk by Thomas Boehm was the highlight of the first day for me.

The Boehm laboratory has been looking at the genetic evolution of thymus development. The thymus is the nursery for T cells, the coordinator of the adaptive immune response. The Boehm laboratory analysed the genetic phylogeny of sample species spanning the 500 million years of thymus evolution and found several key genes that have been conserved through this process. The master coordinator of thymus development, Foxn1, had already been known, but how this master coordinator worked was a mystery, so the Boehm laboratory used the evolutionary analysis to try to recapitulate thymic development in zebrafish and mice.

In zebrafish, Weyn and colleages were able to use live imaging to analyse the genes that the thymus needs to express in order to recruit progenitor cells. This was done by using genetic expression of coloured dyes, making the primordial thymus glow red and the progenitor cells glow green. They found that just two conserved genes, Ccl25a and Cxcl12a, were synergistically acting to draw in all the precursor cells.

In mice, Bajoghli and colleages tried to use the knowledge gleaned from evolutionary analysis to completely bypass Foxn1. The rationale is that if we know exactly what Foxn1 does to drive thymic development then we should be able to recapitulate thymic development in the absence of Foxn1 by simply expressing the downstream genes. So the Boehm team took the four key genes that were conserved over 500 million years of thymic development, Ccl25, Cxcl12, KitL and Dll4, and expressed them in isolation or in combination in thymic cells that were genetically deficient in Foxn1. Normally, these deficient thymic cells cannot attract T cell precursors. However, Bajoghli and colleages found that just as in zebrafish, two genes in mice were able to essentially restore the capacity to recruit precursors, Ccl25 and Cxcl12. A third gene, KitL, allowed these cells to proliferate and increase in number. What these three genes could not do, however, was turn the precursors into T cells. That job required the fourth gene, Dll4, which had no role in recruitment or proliferation but which was essential for the differentiation of recruited precursors into T cells. Through evolutionary genetics the gene network of an entire organ is being unravelled.

Some of this research is current unpublished, other aspects just came out in the journal Cell.

Page 1 2 3